ОБЖ.Сайт Сарапулова А.Е.
Меню сайта
Мини-чат
Наш опрос
Оцените мой сайт
Всего ответов: 546

 

Общие сведения об авариях на радиационно опасных объектах

                               

За последние четыре десятилетия атомная энергетика и использование расщепляющих материалов прочно вошли в жизнь человечества. В настоящее время в мире работает более 450 ядерных реакторов. Атомная энергетика позволила существенно снизить "энергетический голод” и оздоровить экологию в ряде стран. Так, во Франции более 75% электроэнергии получают от АЭС и при этом количество углекислого газа, поступающего в атмосферу, удалось сократить в 12 раз. В условиях безаварийной работы АЭС атомная энергетика — пока самое экономичное и экологически чистое производство энергии и альтернативы ей в ближайшем будущем не предвидится. Вместе с тем бурное развитие атомной промышленности и атомной энергетики, расширение сферы применения источников радиоактивности обусловили появление радиационной опасности и риска возникновения радиационных аварий с выбросом радиоактивных веществ и загрязнением окружающей среды. Радиационная опасность может возникать при авариях на радиационно опасных объектах (РОО). РОО — объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества и при аварии, на котором или его разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, сельскохозяйственных животных и растений, объектов народного хозяйства, а также окружающей природной среды.

 

В настоящее время в России функционирует более 700 крупных радиационно опасных объектов, которые в той или иной степени представляют радиационную опасность, но объектами повышенной опасности являются атомные станции. Практически все действующие АЭС расположены в густонаселенной части страны, а в их 30-километровых зонах проживает около 4 млн. человек. Общая площадь радиационно дестабилизированной территории России превышает 1 млн. км2, на ней проживает более 10 млн. человек.

 

Аварии на РОО могут привести к радиационной чрезвычайной ситуации (РЧС). Под радиационной чрезвычайной ситуацией понимается неожиданная опасная радиационная ситуация, которая привела или может привести к незапланированному облучению людей или радиоактивному загрязнению окружающей среды сверхустановленных гигиенических нормативов и требует экстренных действий по защите людей и среды обитания.

 

Классификация радиационных аварий

 

Аварии, связанные с нарушением нормальной эксплуатации РОО, подразделяются на проектные и запроектные.

 
 

Проектная авария — авария, для которой проектом определены исходные события и конечные состояния, в связи с чем предусмотрены системы безопасности.


 
 
 

Запроектная авария — вызывается не учитываемыми для проектных аварий исходными событиями и приводит к тяжелым последствиям. При этом может произойти выход радиоактивных продуктов в количествах, приводящих к радиоактивному загрязнению прилегающей территории, возможному облучению населения выше установленных норм. В тяжелых случаях могут произойти тепловые и ядерные взрывы.


 
 

В зависимости от границ зон распространения радиоактивных веществ и радиационных последствий потенциальные аварии на АЭС делятся на шесть типов: локальная, местная, территориальная, региональная, федеральная, трансграничная.

 

Если при региональной аварии количество людей, получивших дозу облучения выше уровней, установленных для нормальной эксплуатации, может превысить 500 человек, или количество людей, у которых могут быть нарушены условия жизнедеятельности, превысит 1 000 человек, или материальный ущерб превысит 5 млн. минимальных размеров оплаты труда, то такая авария будет федеральной.

 

При трансграничных авариях радиационные последствия аварии выходят за территорию Российской Федерации, либо данная авария произошла за рубежом и затрагивает территорию Российской Федерации.

 

За суммарный срок эксплуатации всех имеющихся в мире реакторов АЭС, равный 6 000 лет, произошли лишь 3 крупные аварии: в Англии (Уиндекейл, 1957 г.), в США (Три-Майл-Айланд, 1979 г.) и в СССР (Чернобыль, 1986 г.). Авария на Чернобыльской АЭС была наиболее тяжелой. Эти аварии сопровождались человеческими жертвами, радиоактивным загрязнением больших площадей и огромным материальным ущербом. В результате аварии в Уиндекейле погибло 13 человек и оказалась загрязнена радиоактивными веществами территория площадью 500 км2. Прямой ущерб аварии в Три-Майл-Айланде составил сумму свыше 1 млрд. долл. При аварии на Чернобыльской АЭС погибло 30 человек, свыше 500 было госпитализировано и 115 тыс. человек эвакуировано.

 

Международным агентством по атомной энергетике (МАГАТЭ) разработана международная шкала событий на АЭС, включающая 7 уровней. По ней авария в США относится к 5 уровню (с риском для окружающей среды), в Великобритании — к 6 уровню (тяжелая), Чернобыльская авария — к 7 уровню (глобальная).

 

Общая характеристика последствий радиационных аварий

Долгосрочные последствия аварий и катастроф на объектах с ядерной технологией, которые носят экологический характер оцениваются, главным образом, по величине радиационного ущерба, наносимого здоровью людей. Кроме того, важной количественной мерой этих последствий является степень ухудшения условий обитания и жизнедеятельности людей. Безусловно, уровень смертности и ухудшения здоровья людей имеет прямую связь с условиями обитания и жизнедеятельности, поэтому рассматриваются в комплексе с ними.

 

Последствия радиационных аварий обусловлены их поражающими факторами, к которым на объекте аварии относятся ионизирующее излучение как непосредственно при выбросе, так и при радиоактивном загрязнении территории объекта; ударная волна (при наличии взрыва при аварии); тепловое воздействие и воздействие продуктов сгорания (при наличии пожаров при аварии). Вне объекта аварии поражающим фактором является ионизирующее излучение вследствие радиоактивного загрязнения окружающей среды.

 

Медицинские последствия радиационных аварий



Любая крупная радиационная авария сопровождается двумя принципиально различающимися между собой видами возможных медицинских последствий:
 
  • радиологическими последствиями, которые являются результатом непосредственного воздействия ионизирующего излучения



  •  
  •  
  • различными расстройствами здоровья (общими, или соматическими расстройствами), вызванными социальными, психологическими или стрессорными факторами, т. е. другими повреждающими факторами аварии нерадиационной природы



  •  
  •  

 

Радиологические последствия (эффекты) различаются по времени их проявления: ранние (не более месяца после облучения) и отдаленные, возникающие по истечении длительного срока (годы) после радиационного воздействия.

 

Последствия облучения организма человека заключаются в разрыве молекулярных связей; изменении химической структуры соединений, входящих в состав организма; образовании химически активных радикалов, обладающих высокой токсичностью; нарушении структуры генетического аппарата клетки. В результате изменяется наследственный код и происходят мутагенные изменения, приводящие к возникновению и развитию злокачественных новообразований, наследственных заболеваний, врожденных пороков развития детей и появлению мутаций в последующих поколениях. Они могут быть соматическими (от греч. soma — тело), когда эффект облучения возникает у облученного, и наследственными, если он проявляется у потомства.

 

Наиболее чувствительны к радиационному воздействию кроветворные органы (костный мозг, селезенка, лимфатические узлы), эпителий слизистых оболочек (в частности, кишечника), щитовидная железа. В результате действия ионизирующих излучений возникают тяжелейшие заболевания: лучевая болезнь, злокачественные новообразования и лейкемии.

 

Экологические последствия радиационных аварий

 

Радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению. Основными специфическими явлениями и факторами, обусловливающими экологические последствия при радиационных авариях и катастрофах, служат радиоактивные излучения из зоны аварии, а также из формирующегося при аварии и распространяющегося в приземном слое облака (облаков) загрязненного радионуклидами воздуха; радиоактивное загрязнение компонентов окружающей среды.

 

Воздушные массы, двигавшиеся 26 апреля 1986 г. на запад, 27 апреля на север и северо-запад, 28–29 апреля от северного направления повернули на восток, юго-восток и далее 30 апреля юг (на Киев).

 

Последующее длительное поступление радионуклидов в атмосферу происходило за счет горения графита в активной зоне реактора. Основной выброс радиоактивных продуктов продолжался в течение 10 суток. Однако истечение радиоактивных веществ из разрушенного реактора и формирование зон загрязнения продолжались в течение месяца. Долгосрочный характер воздействия радионуклидов определялся значительным периодом полураспада. Осаждение радиоактивного облака и формирование следа происходили длительное время. В течение этого времени изменялись метеорологические условия и след радиоактивного облака приобрел сложную конфигурацию. Фактически сформировались два радиоактивных следа: западный и северный. Наиболее тяжелые радионуклиды распространялись на запад, а основная масса более легких (йод и цезий), поднявшись выше 500–600 м (до 1,5 км), была перенесена на северо-запад.

 

В результате аварии около 5% радиоактивных продуктов, накопившихся за 3 года работы в реакторе, вышли за пределы промышленной площадки станции. Летучие изотопы цезия (134 и 137) распространились на огромные расстояния (значительное количество по всей Европе) и были обнаружены в большинстве стран и океанах Северного полушария. Чернобыльская авария привела к радиоактивному загрязнению территорий 17 стран Европы общей площадью 207,5 тыс. км2, с площадью загрязнения цезием выше 1 Кю/км2.

 

Если выпадения по всей Европе принять за 100%, то из них на территорию России пришлось 30%, Белоруссии — 23%, Украины — 19%, Финляндии — 5%, Швеции — 4,5%, Норвегии — 3,1%. На территориях России, Белоруссии и Украины в качестве нижней границы зон радиоактивного загрязнения был принят уровень загрязнения 1 Кю/км2.

 

Сразу после аварии наибольшую опасность для населения представляли радиоактивные изотопы йода. Максимальное содержание йода-131 в молоке и растительности наблюдалось с 28 апреля по 9 мая 1986 г. Однако в этот период "йодовой опасности” защитные мероприятия почти не проводились.

 

В дальнейшем радиационную обстановку определяли долгоживущие радионуклиды. С июня 1986 г. радиационное воздействие формировалось в основном за счет радиоактивных изотопов цезия, а в некоторых районах Украины и Белоруссии также и стронция. Наиболее интенсивные выпадения цезия характерны для центральной 30-кило-метровый зоны вокруг Чернобыльской АЭС. Другая сильно загрязненная зона — это некоторые районы Гомельской и Могилевской областей Белоруссии и Брянской области России, которые расположены примерно в 200 км от АЭС. Еще одна, северо-восточная зона расположена в 500 км от АЭС, в нее входят некоторые районы Калужской, Тульской и Орловской областей. Из-за дождей выпадения цезия легли "пятнами”, поэтому даже на соседних территориях плотность загрязнения могла различаться в десятки раз. Осадки сыграли существенную роль в формировании выпадений — в зонах выпадения дождевых осадков загрязнение в 10 и более раз превышало выпадение в "сухих” местах. При этом в России выпадения были "размазаны” на достаточно большой территории, поэтому общая площадь территорий, загрязненных выше 1 Кю/км2, в России наибольшая. А в Белоруссии, где выпадения оказались более сконцентрированными, образовалась наибольшая по сравнению с другими странами площадь территорий, загрязненных свыше 40 Кю/км2. Плутоний-239 как тугоплавкий элемент не распространился в значительных количествах (превышающих допустимые значения в 0,1 Кю/км2) на большие расстояния. Его выпадения практически ограничились 30-километровой зоной. Однако эта зона площадью около 1 100 км2 (где и стронция-90 в большинстве случаев выпало более 10 Кю/км2) стала надолго непригодной для проживания человека и хозяйствования, так как период полураспада плутония-239 составляет 24,4 тыс. лет.

 

В России общая площадь радиоактивно загрязненных территорий с плотностью загрязнения выше 1 Кю/км2 по цезию-137 достигала 100 тыс. км2, а свыше 5 Кю/км2 — 30 тыс. км2. На загрязненных территориях оказалось 7 608 населенных пунктов, в которых проживало около 3 млн. человек. Вообще же радиоактивному загрязнению подверглись территории 16 областей и 3 республик России (Белгородской, Брянской, Воронежской, Калужской, Курской, Липецкой, Ленинградской, Нижегородской, Орловской, Пензенской, Рязанской, Саратовской, Смоленской, Тамбовской, Тульской, Ульяновской, Мордовии, Татарстана, Чувашии).

 

Радиоактивное загрязнение затронуло более 2 млн. га сельхозугодий и около 1 млн. га лесных земель. Территория с плотностью загрязнения 15 Кю/км2 по цезию-137, а также радиоактивные водоемы находятся только в Брянской области, в которой прогнозируется исчезновение загрязнения примерно через 100 лет после аварии. При распространении радионуклидов транспортирующей средой является воздух или вода, а роль концентрирующей и депонирующей среды выполняют почва и донные отложения. Территории радиоактивного загрязнения — это, главным образом, сельскохозяйственные районы. Это значит, что радионуклиды могут попасть с продуктами питания в организм человека. Радиоактивное загрязнение водоемов, как правило, представляет опасность лишь в первые месяцы после аварии. Наиболее доступны для усвоения растениями "свежие” радионуклиды при поступлении аэральным путем и в начальный период пребывания в почве (например, для цезия-137 заметно уменьшение поступления в растения с течением времени, т. е. при "старении” радионуклида).

 

Сельскохозяйственная продукция (прежде всего молоко) при отсутствии соответствующих запретов на ее употребление стала главным источником облучения населения радиоактивным йодом в первый месяц после аварии. Местные продукты питания вносили существенный вклад в дозы облучения и во все последующие годы. В настоящее время, спустя 20 лет, потребление продукции подсобных хозяйств и даров леса дает основной вклад в дозу облучения населения. Принято считать, что 85% суммарной прогнозируемой дозы внутреннего облучения на последующие 50 лет после аварии составляет доза внутреннего облучения, обусловленная потреблением продуктов питания, которые выращены на загрязненной территории, и лишь 15% падает на дозу внешнего облучения. В результате радиоактивного загрязнения компонентов окружающей среды происходят включение радионуклидов в биомассу, их биологическое накопление с последующим негативным воздействием на физиологию организмов, репродуктивные функции и т. д.

 

На любом этапе получения продукции и приготовления пищи можно уменьшить поступление радионуклидов в организм человека. Если тщательно мыть зелень, овощи, ягоды, грибы и другие продукты, радионуклиды не будут попадать в организм с частичками почвы. Эффективные пути уменьшения поступления цезия из почвы в растения — глубокая перепашка (делает цезий недоступным для корней растений); внесение минеральных удобрений (снижает переход цезия из почвы в растение); подбор выращиваемых культур (замена на виды, накапливающие цезий в меньшей степени). Уменьшить поступление цезия в продукты животноводства можно подбором кормовых культур и использованием специальных пищевых добавок. Сократить содержание цезия в продуктах питания можно различными способами их переработки и приготовления. Цезий растворим в воде, поэтому за счет вымачивания и варки его содержание уменьшается. Если овощи, мясо, рыбу варить 5–10 минут, то 30–60% цезия перейдет в отвар, который затем стоит слить. Квашение, маринование, соление снижает содержание цезия на 20%. То же относится и к грибам. Их очистка от остатков почвы и мха, вымачивание в солевом растворе и последующее кипячение в течение 30–45 минут с добавлением уксуса или лимонной кислоты (воду сменить 2–3 раза) позволяют снизить содержание цезия до 20 раз. У моркови и свеклы цезий накапливается в верхней части плода, если ее срезать на 10–15 мм, его содержание снизится в 15–20 раз. У капусты цезий сосредоточен в верхних листьях, удаление которых уменьшит его содержание до 40 раз. При переработке молока на сливки, творог, сметану содержание цезия снижается в 4–6 раз, на сыр, сливочное масло — в 8–10 раз, на топленое масло — в 90–100 раз.

 

Радиационная обстановка зависит не только от периода полураспада (для йода-131 — 8 дней, цезия-137 — 30 лет). Со временем радиоактивный цезий уходит в нижние слои почвы и становится менее доступным для растений. Одновременно снижается и мощность дозы над поверхностью земли. Скорость этих процессов оценивается эффективным периодом полураспада. Для цезия-137 он составляет около 25 лет в лесных экосистемах, 10–15 лет на лугах и пашнях, 5–8 лет в населенных пунктах. Поэтому радиационная обстановка улучшается быстрее, чем происходит естественный расход радиоактивных элементов. С течением времени плотность загрязнения на всех территориях уменьшается, а их общая площадь сокращается.

 

Радиационная обстановка также улучшалась в результате проведения защитных мероприятий. Для предотвращения разноса пыли асфальтировались дороги и накрывались колодцы; перекрывались крыши жилых домов и общественных зданий, где в результате выпадений скапливались радионуклиды; местами снимался почвенный покров; в сельском хозяйстве проводились специальные мероприятия для снижения загрязнения сельскохозяйственной продукции.

 

Особенности радиационной защиты населения

 

 

Радиационная защита – это комплекс мер, направленных на ослабление или исключение воздействия ионизирующего излучения на население, персонал радиационно опасных объектов, биологические объекты природной среды, а также на предохранение природных и техногенных объектов от загрязнения радиоактивными веществами и удаление этих загрязнений (дезактивацию).


 

 

Мероприятия радиационной защиты, как правило, осуществляются заблаговременно, а в случае возникновения радиационных аварий, при обнаружении локальных радиоактивных загрязнений — в оперативном порядке.

 


В превентивном порядке проводятся следующие мероприятия радиационной защиты:
 

 

  • разрабатываются и внедряются режимы радиационной безопасности



  •  
  •  
  • создаются и эксплуатируются системы радиационного контроля за радиационной обстановкой на территориях атомных станций, в зонах наблюдения и санитарно-защитных зонах этих станций;



  •  
  •  
  • разрабатываются планы действий по предупреждению и ликвидации радиационных аварий;



  •  
  •  
  • накапливаются и содержатся в готовности средства индивидуальной защиты, йодной профилактики и дезактивации;



  •  
  •  
  • поддерживаются в готовности к применению защитные сооружения на территории АЭС, противорадиационные укрытия в населенных пунктах вблизи атомных станций;



  •  
  •  
  • проводятся подготовка населения к действиям в условиях радиационных аварий, профессиональная подготовка персонала радиационно опасных объектов, личного состава аварийно-спасательных сил и др.



  •  
  •  

К мероприятиям, способам и средствам, обеспечивающим защиту населения от радиационного воздействия при радиационной аварии, относятся:
 

  обнаружение факта радиационной аварии и оповещение о ней;

 

  • выявление радиационной обстановки в районе аварии;
  • организация радиационного контроля;
  • установление и поддержание режима радиационной безопасности;
  • проведение при необходимости на ранней стадии аварии йодной профилактики населения, персонала аварийного объекта и участников ликвидации последствий аварии;
  • обеспечение населения, персонала, участников ликвидации последствий аварии необходимыми средствами индивидуальной защиты и использование этих средств;
  • укрытие населения в убежищах и противорадиационных укрытиях;
  • санитарная обработка;
  • дезактивация аварийного объекта, других объектов, технических средств и др
  • эвакуация или отселение населения из зон, в которых уровень загрязнения или дозы облучения превышают допустимые для проживания населения.

  

Выявление радиационной обстановки проводится для определения масштабов аварии, установления размеров зон радиоактивного загрязнения, мощности дозы и уровня радиоактивного загрязнения в зонах оптимальных маршрутов движения людей, транспорта, а также определения возможных маршрутов эвакуации населения и сельскохозяйственных животных.

 

Радиационный контроль в условиях радиационной аварии проводится с целью соблюдения допустимого времени пребывания людей в зоне аварии, контроля доз облучения и уровней радиоактивного загрязнения.

 

Режим радиационной безопасности обеспечивается установлением особого порядка доступа в зону аварии, зонированием района аварии; проведением аварийно-спасательных работ, осуществлением радиационного контроля в зонах и на выходе в "чистую” зону и др.

 

Использование средств индивидуальной защиты заключается в применении изолирующих средств защиты кожи (защитные комплекты), а также средств защиты органов дыхания и зрения (ватно-марлевые повязки, различные типы респираторов, фильтрующие и изолирующие противогазы, защитные очки и др.). Они защищают человека в основном от внутреннего облучения.

 

Для защиты щитовидной железы взрослых и детей от воздействия радиоактивных изотопов йода на ранней стадии аварии проводится йодная профилактика. Она заключается в приеме стабильного йода, в основном йодистого калия, который принимают в таблетках в следующих дозах: детям от двух лет и старше, а также взрослым по 0,125 г, до двух лет по 0,04 г., прием внутрь после еды вместе с киселем, чаем, водой 1 раз в день в течение 7 суток. Раствор йода водно-спиртовой (5%-ная настойка йода) показан детям от двух лет и старше, а также взрослым по 3–5 капель на стакан молока или воды в течение 7 суток. Детям до двух лет дают 1–2 капли на 100 мл молока или питательной смеси в течение 7 суток.

 

Максимальный защитный эффект (снижение дозы облучения примерно в 100 раз) достигается при предварительном и одновременном с поступлением радиоактивного йода приеме его стабильного аналога. Защитный эффект препарата значительно снижается при его приеме более чем через два часа после начала облучения. Однако и в этом случае происходит эффективная защита от облучения при повторных поступлениях радиоактивного йода.

 

Защиту от внешнего облучения могут обеспечить только защитные сооружения, которые должны оснащаться фильтрами-поглотителями радионуклидов йода. Временные укрытия населения до проведения эвакуации могут обеспечить практически любые герметизированные помещения.

Вход на сайт
Поиск
Календарь
«  Июль 2018  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
3031
Архив записей
Девушки в Армии
полезные сайты
Все О БЕЗОПАСНОСТИ ДЕТЕЙ
МЧС РФ
ссылки

Министерство образования, науки и инновационной политики Новосибирской области

center center
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
погода
...
Рейтинг образовательных сайтов mega-talant.com
mega-talant.com
...
Друзья сайта